Bonsoir, j'ai un dm de maths a rendre pr vendredi, et j'ai bien évidement déjà commencé, mais je suis bloqué un peu plus loin ds le dm.. L'énoncé : On suppose d
Mathématiques
khaoula9512
Question
Bonsoir, j'ai un dm de maths a rendre pr vendredi, et j'ai bien évidement déjà commencé, mais je suis bloqué un peu plus loin ds le dm.. L'énoncé : On suppose dans toute cette question que 0
a. Déterminer le signe de : 4ab - 1
( et ici je ne sais pas cmt ajouter "-1" dans un encadrement je suis allé jusqu'à 0 < 4ab 《 1 , mais après pr mettre -1... )
Et un peu plus loin :
6. Déterminer les variations de f sur [0,5 ; +infini [
( f (x) = 2x + 1/2x )
Merci d'avance pour votre aide
a. Déterminer le signe de : 4ab - 1
( et ici je ne sais pas cmt ajouter "-1" dans un encadrement je suis allé jusqu'à 0 < 4ab 《 1 , mais après pr mettre -1... )
Et un peu plus loin :
6. Déterminer les variations de f sur [0,5 ; +infini [
( f (x) = 2x + 1/2x )
Merci d'avance pour votre aide
1 Réponse
-
1. Réponse scoladan
Bonjour,
Si tu as : 0 < 4ab ≤ 1,
il suffit de retirer -1 à chaque membre pour obtenir :
0 - 1 < 4ab - 1 ≤ 1 - 1
soit : -1 < 4ab - 1 ≤ 0
6) f(x) = 2x + 1/2x
On dérive : f'(x) = 2 + -2/(2x)² = (8x² - 2)/4x² = (4x² - 1)/2x²
Signe de (4x² - 1) ;
4x² - 1 = 0 ⇔ x² = 1/4 ⇒ x = 1/2 sur [0,5 ; +∞[
Donc (4x² - 1) ≥ 0 sur cet intervalle
x 0,5 +∞
f'(x) 0 +
f(x) croissante